1,381 research outputs found

    ϕ\phi meson transparency in nuclei from ϕN\phi N resonant interactions

    Full text link
    We investigate the ϕ\phi meson nuclear transparency using some recent theoretical developments on the ϕ\phi in medium self-energy. The inclusion of direct resonant ϕN\phi N-scattering and the kaon decay mechanisms leads to a ϕ\phi width much larger than in most previous theoretical approaches. The model has been confronted with photoproduction data from CLAS and LEPS and the recent proton induced ϕ\phi production from COSY finding an overall good agreement. The results support the need of a quite large direct ϕN\phi N-scattering contribution to the self-energy

    The zero exemplar distance problem

    Full text link
    Given two genomes with duplicate genes, \textsc{Zero Exemplar Distance} is the problem of deciding whether the two genomes can be reduced to the same genome without duplicate genes by deleting all but one copy of each gene in each genome. Blin, Fertin, Sikora, and Vialette recently proved that \textsc{Zero Exemplar Distance} for monochromosomal genomes is NP-hard even if each gene appears at most two times in each genome, thereby settling an important open question on genome rearrangement in the exemplar model. In this paper, we give a very simple alternative proof of this result. We also study the problem \textsc{Zero Exemplar Distance} for multichromosomal genomes without gene order, and prove the analogous result that it is also NP-hard even if each gene appears at most two times in each genome. For the positive direction, we show that both variants of \textsc{Zero Exemplar Distance} admit polynomial-time algorithms if each gene appears exactly once in one genome and at least once in the other genome. In addition, we present a polynomial-time algorithm for the related problem \textsc{Exemplar Longest Common Subsequence} in the special case that each mandatory symbol appears exactly once in one input sequence and at least once in the other input sequence. This answers an open question of Bonizzoni et al. We also show that \textsc{Zero Exemplar Distance} for multichromosomal genomes without gene order is fixed-parameter tractable if the parameter is the maximum number of chromosomes in each genome.Comment: Strengthened and reorganize

    Neutrino-Nucleus Reactions and Muon Capture in 12C

    Full text link
    The neutrino-nucleus cross section and the muon capture rate are discussed within a simple formalism which facilitates the nuclear structure calculations. The corresponding formulae only depend on four types of nuclear matrix elements, which are currently used in the nuclear beta decay. We have also considered the non-locality effects arising from the velocity-dependent terms in the hadronic current. We show that for both observables in 12C the higher order relativistic corrections are of the order of ~5 only, and therefore do not play a significant role. As nuclear model framework we use the projected QRPA (PQRPA) and show that the number projection plays a crucial role in removing the degeneracy between the proton-neutron two quasiparticle states at the level of the mean field. Comparison is done with both the experimental data and the previous shell model calculations. Possible consequences of the present study on the determination of the νμ>νe\nu_\mu ->\nu_e neutrino oscillation probability are briefly addressed.Comment: 29 pages, 6 figures, Revtex4. Several changes were made to the previous manuscript, the results and final conclusions remain unalterable. It has been accepted for publication as a Regular Article in Physical Review

    Fast Arc-Annotated Subsequence Matching in Linear Space

    Full text link
    An arc-annotated string is a string of characters, called bases, augmented with a set of pairs, called arcs, each connecting two bases. Given arc-annotated strings PP and QQ the arc-preserving subsequence problem is to determine if PP can be obtained from QQ by deleting bases from QQ. Whenever a base is deleted any arc with an endpoint in that base is also deleted. Arc-annotated strings where the arcs are ``nested'' are a natural model of RNA molecules that captures both the primary and secondary structure of these. The arc-preserving subsequence problem for nested arc-annotated strings is basic primitive for investigating the function of RNA molecules. Gramm et al. [ACM Trans. Algorithms 2006] gave an algorithm for this problem using O(nm)O(nm) time and space, where mm and nn are the lengths of PP and QQ, respectively. In this paper we present a new algorithm using O(nm)O(nm) time and O(n+m)O(n + m) space, thereby matching the previous time bound while significantly reducing the space from a quadratic term to linear. This is essential to process large RNA molecules where the space is likely to be a bottleneck. To obtain our result we introduce several novel ideas which may be of independent interest for related problems on arc-annotated strings.Comment: To appear in Algoritmic

    Nucleon resonance contributions to unpolarised inclusive electron scattering

    Get PDF
    The first CLAS12 experiments will provide high-precision data on inclusive electron scattering observables at a photon virtuality Q2Q^2 ranging from 0.05 GeV2^2 to 12 GeV2^2 and center-of-mass energies WW up to 4 GeV. In view of this endeavour, we present the modeling of the resonant contributions to the inclusive electron scattering observables. As input, we use the existing CLAS electrocoupling results obtained from exclusive meson electroproduction data off protons, and evaluate for the first time the resonant contributions based on the experimental results on the nucleon resonance electroexcitation. The uncertainties are given by the data and duly propagated through a Monte Carlo approach. In this way, we obtain estimates for the resonant contributions, important for insight into the nucleon parton distributions in the resonance region and for the studies of quark-hadron duality

    Time Reversal Invariance Violating and Parity Conserving effects in Neutron Deuteron Scattering

    Get PDF
    Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.Comment: There was a technical mistake in calculations due to singular behavior of Yukawa functions at short range. We corrected the integration algorithm. There were some typos which are corrected. arXiv admin note: text overlap with arXiv:1104.305

    Exact evaluation of the nuclear form factor for new kinds of majoron emission in neutrinoless double beta decay

    Get PDF
    We have developed a formalism, based on the Fourier-Bessel expansion, that facilitates the evaluation of matrix elements involving nucleon recoil operators, such as appear in serveral exotic forms of neutrinoless double beta decay (ββ0ν\beta\beta_{0\nu}). The method is illustrated by applying it to the ``charged'' majoron model, which is one of the few that can hope to produce an observable effect. From our numerical computations within the QRPA performed for 76Ge^{76}Ge, 82Se^{82}Se, 100Mo^{100} Mo, 128Te^{128}Te and 150Nd^{150}Nd nuclei, we test the validity of approximations made in earlier work to simplify the new matrix elements, showing that they are accurate to within 15%. Our new method is also suitable for computing other previously unevaluated ββ0ν\beta\beta_{0\nu} nuclear matrix elements.Comment: 11pp., latex, fixed minor typographical error

    Isospin-mixing corrections for fp-shell Fermi transitions

    Get PDF
    Isospin-mixing corrections for superallowed Fermi transitions in {\it fp}-shell nuclei are computed within the framework of the shell model. The study includes three nuclei that are part of the set of nine accurately measured transitions as well as five cases that are expected to be measured in the future at radioactive-beam facilities. We also include some new calculations for 10^{10}C. With the isospin-mixing corrections applied to the nine accurately measured ftft values, the conserved-vector-current hypothesis and the unitarity condition of the Cabbibo-Kobayashi-Maskawa (CKM) matrix are tested.Comment: 13 pages plus five tables. revtex macro

    Large-basis shell-model calculation of 10C->10B Fermi matrix element

    Full text link
    We use a 4Ω4\hbar\Omega shell-model calculation with a two-body effective interaction derived microscopically from the Reid93 potential to calculate the isospin-mixing correction for the 10C->10B superallowed Fermi transition. The effective interaction takes into account the Coulomb potential as well as the charge dependence of T=1 partial waves. Our results suggest the isospin- mixing correction δC0.1\delta_{C}\approx 0.1 %, which is compatible with previous calculations. The correction obtained in those calculations, performed in a 0Ω0\hbar\Omega space, was dominated by deviation from unity of the radial overlap between the converted proton and the corresponding neutron. In the present calculation this effect is accommodated by the large model space. The obtained δC\delta_{C} correction is about a factor of four too small to obtain unitarity of the Cabibbo-Kobayashi-Maskawa matrix with the present experimental data.Comment: 14 pages. REVTEX. 3 PostScript figure
    corecore